Catalytic majorization and ` p norms

نویسندگان

  • Guillaume Aubrun
  • Ion Nechita
چکیده

An important problem in quantum information theory is the mathematical characterization of the phenomenon of quantum catalysis: when can the surrounding entanglement be used to perform transformations of a jointly held quantum state under LOCC (local operations and classical communication) ? Mathematically, the question amounts to describe, for a fixed vector y, the set T (y) of vectors x such that we have x ⊗ z ≺ y ⊗ z for some z, where ≺ denotes the standard majorization relation. Our main result is that the closure of T (y) in the l1 norm can be fully described by inequalities on the lp norms: ‖x‖p 6 ‖y‖p for all p > 1. This is a first step towards a complete description of T (y) itself. It can also be seen as a lp-norm analogue of Ky Fan dominance theorem about unitarily invariant norms. The proofs exploits links with another quantum phenomenon: the possibiliy of multiple-copy transformations (x ≺ y for given n). The main new tool is a variant of Cramér’s theorem on large deviations for sums of i.i.d. random variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities for Unitarily Invariant Norms and Bilinear Matrix Products

We give several criteria that are equivalent to the basic singular value majorization inequality (1.1) that is common to both the usual and Hadamard products. We then use these criteria to give a uniied proof of the basic majorization inequality for both products. Finally, we introduce natural generalizations of the usual and Hadamard products and show that although these generalizations do not...

متن کامل

Stochastic domination for iterated convolutions and catalytic majorization

We study how iterated convolutions of probability measures compare under stochastic domination. We give necessary and sufficient conditions for the existence of an integer n such that μ is stochastically dominated by ν for two given probability measures μ and ν. As a consequence we obtain a similar theorem on the majorization order for vectors in R. In particular we prove results about catalysi...

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

Majorization for partially ordered sets

We generalize the classical notion of majorization in Rn to a majorization order for functions defined on a partially ordered set P . In this generalization we use inequalities for partial sums associated with ideals in P . Basic properties are established, including connections to classical majorization. Moreover, we investigate transfers (given by doubly stochastic matrices), complexity issue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017